What is #BlockChain? Implications for Healthcare by @msharmas

In my previous article I discussed about the benefits and barriers to the use of an Integrated Health Information Platform. In healthcare the need for presenting the Information to the Right Person at the Right Time has been proven to improve outcomes in patient treatment.

Will HIE 2.0 benefit from the use of Blockchain in presenting the information to the Right Person at the Right Time? 


What is Blockchain?
Various definitions of Blockchain have been put across based on the context of the use. Some of these definitions are: 

A digital ledger in which transactions made in bitcoin or another cryptocurrency are recorded chronologically and publicly.

“The blockchain is an incorruptible digital ledger of economic transactions that can be programmed to record not just financial transactions but virtually everything of value.” Don & Alex Tapscott, authors Blockchain Revolution (2016)


The Blockchain is a decentralized ledger of all transactions across a peer-to-peer network. Using this technology, participants can confirm transactions without the need for a central certifying authority. Potential applications include, fund transfers, settling trades, voting etc.


Blockchain is a distributed system for recording and storing transaction records. More specifically, blockchain is a shared, immutable record of peer-to-peer transactions built from linked transaction blocks and stored in a digital ledger. [1]


A Blockchain is a data structure that can be timed-stamped and signed using a private key to prevent tampering. There are generally three types of Blockchain: public, private and consortium. [6]

How is Blockchain different?

Traditional databases are proprietary to the entity that maintains them and owns them. And the information stored within these databases are accessed only by providing access via an application or shared by the entity in some form of a distributed architecture. 

On the other hand, “blockchain is enabling a database to be directly shared across boundaries of trust, without requiring a central administrator. This is possible because blockchain transactions contain their own proof of validity and their own proof of authorization, instead of requiring some centralized application logic to enforce those constraints. Transactions can therefore be verified and processed independently by multiple “nodes”, with the blockchain acting as a consensus mechanism to ensure those nodes stay in sync.” [2]

A quite often stated example for explaining Blockchain is the Google Doc example. Earlier, collaborating on a document involved a serial approach to making changes to a document. Only once the author has completed the document, can it be forwarded to the next person to edit and provide feedback. 

But consider the Google Doc (or any of the other collaboration tools), once you have created a google doc, you can start creating the document and also share the same document with other collaborators who can also make changes to the document at the same time allowing for reconciliation of changes to be incorporated within the document to finalise it. The author takes the comments from the collaborators and generates the finalised document.

Blockchain: How it Works?

A transaction is requested. The transaction is broadcasted to the peer-to-peer network consisting of computer nodes. The network validates the transaction and the initiating entity’s status using relevant algorithms.  The transaction record is then considered to be verified.

Upon verification, the transaction record is added with other transactions to create a new block of data for the decentralized ledger of all transactions across a peer-to-peer network.

The new Block is added to the existing ledger of all transactions, i.e., the Blockchain. The transaction is now complete.

Types of Blockchains

Permissionless or Unpermissioned Blockchain allows anyone to join the network and participate in the block verification. For instance, a permissionless blockchain example is the Bitcoin.

Permissioned Blockchains restricts the nodes in the network who can contribute to the consensus of the system. Only permissioned nodes have the rights to validate the block transactions.

For instance, most enterprise Blockchains are permissioned blockchain and allow for privacy, scalability and fine-grained access control. [5]
Interoperability in Healthcare

There are various use cases that come to mind, when we talk about interoperability in Healthcare. (most are N:N interactions)

  1. HIMS to Lab Equipment
  2. HIMS to PACS
  3. HIMS to HIMS
  4. HIMS to Apps
  5. HIMS to Portals (Patient, Physician, etc)
  6. Portal to Portal
  7. Stakeholders to HIE
  8. Hospitals to Insurance

You can consider the number of stakeholders in the Interoperability ecosystem and continue to add them to the above list of use cases. And that allows one to understand the current fragmented nature of the Patient’s Healthcare Information. 

Each of the above stakeholders, generate the patient care record and have the need at one time or another to share this information with others in the ecosystem. We have already seen the benefits and barriers to information exchange. 

For the purpose of this blog, lets consider the Healthcare Information exchange use case. HIEs’ share the patient information in a network that is accessed by participating entities. The Patient information available on the HIE can be accessed as and when required by the patients’ treating doctor. 

The availability of a patient information, at the right place and at the right time was (one of) the intended purpose of a Health Information Exchange. HIE frameworks relied on a centralised or federated or hybrid architectures [3] to make the information available to the participants in the exchange. The exchange is maintained by an entity.

In the nationwide Interoperability roadmap defined by the ONC (US) [1]. They define the critical policy and technical components required as

  1. Ubiquitous, secure network infrastructure
  2. Verifiable identity and authentication of all participants
  3. Consistent representation of authorization to access electronic health information, and several other requirements


Additionally, the ONC challenge stated Potential uses to include:[6]

  1. Digitally sign information
  2. Computable enforcement of policies and contracts (smart contracts)
  3. Management of Internet of Things (IoT) devices
  4. Distributed encrypted storage
  5. Distributed trust

In India, an Integrated Health Information Platform (IHIP) is being setup by the Ministry of Health and Family Welfare (MoHFW). The primary objective of IHIP is to enable the creation of standards compliant Electronic Health Records (EHRs) of the citizens on a pan-India basis along with the integration and interoperability of the EHRs through a comprehensive Health Information Exchange (HIE) as part of this centralized accessible platform. 

IHIP is envisaged to enable
  1. Better continuity of care, 
  2. secure and confidential health data/records management, 
  3. better diagnosis of diseases, 
  4. reduction in patient re-visits and even prevention of medical errors, 
  5. optimal information exchange to support better health outcomes

With the understanding of What is Blockchain, What is Interoperability in Healthcare and What are the use cases for Interoperability in healthcare, do you think Blockchain Technology can be used in Healthcare? Do share your thoughts and use cases.

In the next part of the blog, I will explore some of these use cases in healthcare and for the purpose of defining how Blockchain can help interoperability of Patient Transactions across healthcare facilities.


References

1. Blockchain Opportunities for Healthcare: https://www2.deloitte.com/us/en/pages/public-sector/articles/blockchain-opportunities-for-health-care.html


3. Health Information Exchange – Architecture Types https://corepointhealth.com/health-information-exchange-architecture-types

4. Bitcoin is the Sewer Rat of Currencies, interview of Andreas Antonopoulos by Mark Frauenfelder http://ow.ly/XDMe30bumBy

5. Blockchain – What is Permissioned vs Permissionless? by Deva Annamalai on Core Dump https://bornonjuly4.me/2017/01/10/blockchain-what-is-permissioned-vs-permissionless/

6. ONC Blockchain Challenge: https://www.healthit.gov/newsroom/blockchain-challenge
Author

[tab]
[content title=”About Manish Sharma” icon=”fa-heart”]

Manish Sharma

Founder HCITExpert.com, Digital Health Entrepreneur

Connect with me via any of my Social Media Channels

[/content]
[content title=”Latest Articles”]

[/content] [/tab]

Advertisements

Benefits of an Integrated Health Information Platform #IHIP by @msharmas

We have seen the benefits of Aadhar and how a public data repository can be used for public good. Population Health based clinical data repositories too can play a similar pivotal role in providing potentially great benefits


The use of Healthcare IT in the Indian context is picking up with most of the corporate hospitals going for the #EHRs and HIMS solutions. And these are present mostly in the Tier I cities and urban areas. There is a move now to get these solutions to the Tier 2 and Tier 3 centers as well. I would be looking to review reports that highlight percentage of IT enablement in Healthcare facilities, as part of follow up articles to this one.

The Center for Healthcare Informatics has rolled out an RFI detailing the requirements of an Integrated Healthcare Information Platform (IHIP). You can also visit the dedicated website to review the details of the IHIP RFI:
In this article I would like to highlight the benefits that will accrue from implementing such a solution in India. With no historic data of past implementations of such a system in India, I have reviewed the information available in journals and public domain regarding similar implementations across the world and what are the benefits and barriers in implementing an Healthcare Information Highway of patient healthcare data.


Benefits of Implementing an HIE

  1. Benefits of Implementing HIEs:
HIEs that have been implemented in the US have conclusively shown emergency departments gaining efficiency in patient visits with the use of HIE based solutions.
HIEs have shown to reduce the length of patient stay, readmission risk, and number of doctors involved in patient visits [1].
HLNY ER Dept Infographic_HIEGains.png
  1. Discharge Planning
One of the examples of benefits of an HIE, is the ability to generate alerts 24-hour to 48-hour prior to the patient’s’ discharge to Transportation services, Pharmacies at the patient’s location and alerts to help patient identify long term care and home care facilities. [2]
  1. Transfer of Radiology Images:
Currently the process of exchanging patient radiology images either does not exist or at best is time consuming with problems faced by the patients and providers treating the patients.
The ability to access and view radiology images is important for an accurate and timely patient diagnosis and treatment. Historically, the process of image exchange has happened via CDs with an understanding the receiving and reviewing physician will have the ability to view the PACS images leading to high costs and long time to diagnosis.
Enabling a Transfer to PACS capability helped in cutting these lacunae in the image sharing workflow, enabling providers to quickly share images with each other. [3]
  1. Vaccination and Immunisation details:
HIEs are now moving towards incorporating the exchange of patient immunisation details. Thereby enabling patient centered technology implementations.
  1. Disease Surveillance and Immunisation Records
IHIP will provide increased view of disease outbreaks and allow the governments at the state and national levels to deploy resources effectively and efficiently. IHIP based identification and surveillance of disasters and outbreaks is a big benefit of implementing a platform such as IHIP. And additional areas that provide a fillip to the IHIP-initiative needs to be identified and those aspects of the IHIP needs to be implemented in the initial stages.
  1. Medication Information Sharing via HIEs:
The ability for the patient to build and maintain an electronic Drug Profile is important for the continued care for the patient. Presence of a Comprehensive Patient Drug profile has direct correlation to improved patient safety. Improved medication information processing has a direct correlation to the benefits of an HIE like the IHIP since it will be able to provide a more complete clinical picture of the patient. [4]
  1. Telemedicine service enabled by HIEs:
Telemonitors will be able to provide patients a way to measure and record their vital signs daily from home using a touchscreen tablet/ mobile/ PC. The information will be then wirelessly transmitted to nurses monitoring the information for changes, giving patients with, complex disease states such as heart and respiratory conditions, a sense of empowerment around their health. Telehealth has far reaching benefits for specialists providing their services to patients in the rural, underserved and non-tier I cities. With the presence of digital payment gateways and transactions, Telemedicine is fast becoming a viable business model for certain types of visits(e.g., follow-ups, referrals). [5]
  1. New Use Cases for an HIE:
When HIEs have been implemented, new use cases can emerge that extend the usefulness of HIEs. For example, HIEs have been able to send hospitals alerts and reminders when patient transitions occur, device to device data transport, sending and receiving of claims attachments, and exchanges of documents for referrals [6]
  1. Security of Patient Information (PHI):
The greatest benefit of an IHIP-like solution is the Implementations of Security protocols for transport and transfer of patient information between healthcare facilities and between patients and hospitals. This ensures creation of “Trust” centers of patient data.
  1. Improves the Trust in sources of information
One of the reasons a physician would order for a repeat test for a patient in case of a referral, would be “Trust” on the presence of a similar/ same test result available for the patient in an earlier visit. Enabling information sharing via IHIP in a standardised and secure format will enable “Trust” between healthcare facilities as trusted sources of information. [7]
  1. Strategies to avoid Information Blocking:
Information Blocking has been known to be a major cause of hindrance to the benefits brought out by an HIE. Information Blocking is healthcare facilities not sharing patient healthcare record information causing holes in the episodes of care of a patient’s longitudinal record. To avoid this from happening, “Increasing transparency of EHR vendor business practices and product performance, stronger financial incentives for providers to share information, and making information blocking illegal were perceived as the most effective policy remedies,” wrote researchers. [8]
  1. Paradigm Shift in HIE from 1.0 to 2.0:
HIE 1.0 was characterized by a focus on “the noun,” that is trying to address perceived market failures by solving a wide variety of rich use cases through comprehensive interoperability.
By contrast, HIE 2.0 focuses on the verb that is trying to meet market needs most pressing to participating providers; HIE 2.0 has fewer legal challenges because it is trying to tackle less complex use cases and in many instances has the ability to marshal financial, technical and organizational resources. Tripathi also pointed out that HIE 2.0 comes in many shapes and sizes including point-to-patient; point-to-point; vendor-specific; transaction-specific national level; enterprise-level HIE organizations; State-level and regional collaborative HIE organizations and National level collaborative HIE organizations.
Three areas identified to spur innovation and move towards HIE2.0 were: Lab data transmission, Lightweight directed query of patient information, eCPOE and measures.

Problems Implementing HIE: A review of Global HIE Experiences

  1. Unspecified Interoperability Standards:
Barriers to HIE relate to incomplete and unspecific interoperability standards and the cost of interfacing the EHR with the HIE.  The lack of mature, agreed standards around interfaces, patient consent and patient identification are significant barriers to success.
  1. Accurate patient identification is not only a data management and data quality issue, it’s also a patient safety issue
  2. Clinical Information Generator and Vendor relations
In the India context, healthcare facilities like hospitals, laboratories, pharmacies deploy systems that are proprietary in nature and not necessarily standards based. In the event of strained relations between healthcare facilities and respective vendors, there is a need to consider addressing the need to have the patient related information to be relayed to the patient in a HIE readeable format. This information can then be uploaded by the patient thereby ensuring the continuity of care records are maintained in the IHIP, specific to the patient.
In this scenario, there could be a loss of updates to the public health based registries and the hospital based registries and it should be incumbant on the hospital to ensure the data is transmitted before the changeover of systems happens.
  1. Identifying ROI for various Stakeholders
A study needs to be enabled by the government at the national and state levels that will study the benefits of implementing interfaces that will share information between the Healthcare facilities and the IHIP. Potential savings can be quantified based on cost and projected savings in improved efficiencies enabled by the implementation IHIP towards patient safety and care coordination for the stakeholders.
Additionally, its important to quantify the cost of implementing HIE-based interfaces by the various healthcare entities (like Hospitals, Laboratories, Diagnostic centers, pharmacies, etc). It will be important to identify the Revenue Streams to sustain IHIP data sharing, and how can it be sustained by the stakeholders.
  1. Breach of Security of Data contained in IHIP or connected interfaces
We have seen various types of hacks that have breached the security of patient records stored in hospital systems. Enabling security at various levels needs to be ensured before any of the Stakeholders connect with the IHIP. Security guidelines will have to be defined and adhered to and reported on a regular basis as a regulatory requirement.
Security is also necessary at the IHIP level which has been defined as a main requirement for developing the IHIP infrastructure.
In the US Architecturally, RHIOs employ either the CHMIS approach of a centralized database, the CHIN model of federated independent databases, or some combination of the two, hybrid model.
  1. Usability & Access to Information Ok, so the data about a patient has been stored in the Data Repository for all to access and review at the time of emergencies, for enabling a continuity of care record for the patient and for generating population health management analysis. But, what if the data is not easily accessible, the functionality to access the care information of the patient, requires multiple access requests and clicks and permissions. What if, the data has now been stored in the public data repository, who can access it? Who can view it? Can there be an unauthorised data access by persons not connected to the health care of the patient? [25]
  2. Information Blocking:
For-profit EHR vendors have a natural vested interest in increasing revenue by limiting the flow of data.
“The specific forms of and perceived motivations for information blocking were harder to predict a priori,” Adler-Milstein & Pfeifer explain. “What we found in relation to specific forms is that EHR vendors appear to most often engage in information-blocking behaviors that directly maximize short-term revenue. Our respondents reported that EHR vendors deploy products with limited interoperability and charge providers high fees unrelated to the actual cost to deliver those capabilities or refuse to support information exchange with specific EHRs and HIEs.”
Hospitals and health systems likewise utilize information blocking as a means to prevent clients from seeking services elsewhere to keep from losing out to the competition.
“In our results, the most commonly reported forms of information blocking among hospitals and health systems point to their interest in strengthening their competitive position in the market by controlling patient flow, which has been reported in other studies,” they wrote.

Interoperability in Healthcare: Some thoughts to share

Having followed the implementations in India for sometime now, I always wonder why interoperability is not a top priority or not implemented in most systems. They are HL7 compliant, but are they really interoperable? And I dont mean the part from HIMS to Lab or Rad equipment, that part is fairly well defined and documented. 

– But from the Patient to Hospital to Patient
– Patient to Insurance to Patient
– Patient to app to hospital to Patient

Take for instance most systems are able to share the discharge summaries as emails to patients, and a print out, even today. But on discharge can the patient “share” her discharge summary from an app or application to another practitioner who takes care of the patient rehab? Are for instance, the systems involved in the above use case, interoperable? 

Another point, how many Healthcare Apps (the production versions) have any data sharing via standards? They can however email PDFs of the recorded data. So what can be done to enable out-of-the-box interoperability in the Healthcare Apps? With the growing number of mHealth Apps, we will soon find ourselves in another new set of “Data-Silos” being created on a daily basis.

Recently we moved from Cash to Cashless to Less Cash scenarios … so is it right to say, in healthcare context, we are working from a Paper to Paperless to Less Paper scenario in Healthcare before going totally paperless? 

And if so: 

1. What will be the business case for interoperability and for sharing the discharge summary/ medications in a format that is easily exchangeable?

2. Can a Healthcare IT think tank, work on defining the standards of “workflow” of the data being generated in healthcare today? Starting from the Patient through the healthcare ecosystem and back to the Patient?


3. Can the Healthcare IT vendors form a group of HIMS, LIMS, Pharma Apps, HomeCare solutions that enable a “Patient Data Workflow” exchange group (a mini-IHIP) that actually enables the “Interoperability” of patient data as a great showcase. It could perhaps be tied to the IHIP effort or NDHA. It adds onto the work that is being planned in the Phase 1 of the IHIP project, by being able to provide feedback on issues, solutions, recommendations, pain points etc.

Its important to note, that a system like IHIP has a potential to solve the accessibility of patient care problem in India. My view is that there is a need to see interoperability from a Patient’s point of view rather than from the point of view of “Systems”. There is a need to map the flow of data from the Patient and back to the Patient, and this can help in enabling a radically different approach to interoperability in Indian Healthcare.

With Aadhar based solutions allowing for the consumer information to be securely transmitted and verified, it only behoves well if we were to adopt an “HIE of Patient” approach to IHIP wherein the Information is exchanged between various stakeholders in the Patient’s Care Continuum and that information finally rests with the Patient’s Electronic Health Record (PEHR). With the EHR standards mandating the Healthcare Information belongs to the patient, it will be extending that mandate to IHIP.

References

  1. NY Health Information Exchange Improves ED Quality, Efficiency
  1. HIE Partnership to improve Health Data Exchange of Imaging
  1. Health information exchange and patient safety
  1. Vermont HIE adds telehealth component
  1. DirectTrust HIE growth shows priority of Interoperability
  1. Health information exchange: persistent challenges and new strategies
  1. Health Information Exchanges report Information Blocking
  1. Maine Rural Veterans Health Access HIT Strategies
  1. The Value Of Health Care Information Exchange And Interoperability (a must read paper on how the costing for HIEs can be done)
  1. Health information exchange: persistent challenges and new strategies
  1. Information Blocking: Is It Occurring and What Policy Strategies Can Address It?:
  1. What is HIE?:
  1. Health Information Exchange?:
  1. HIE Benefits?:
  1. Guide to Evaluating Health Information Exchange Projects
  1. HIMSS Library for Information on HIEs
  1. Health Information Exchange – Overview
  1. 10 things to know about health information exchanges
  1. Selecting & Using a Health Information Exchange | AMA
  1. The Sequoia Project eHealth Exchange
  1. What is Health Information Exchange? | HIMSS
  1. IHIP, India
  1. Are Data repositories set to become data dumps? https://www.digitalhealth.net/2017/04/another-view-neil-paul-21/
  2. Powering the Patient Relationship with Blockchains: https://www.healthit.gov/sites/default/files/7-29-poweringthephysician-patientrelationshipwithblockchainhealthit.pdf
  3. Lessons from the UK | Healthcare IT News


Author

[tab]
[content title=”About Manish Sharma” icon=”fa-heart”]

Manish Sharma

Founder HCITExpert.com, Digital Health Entrepreneur

Connect with me via any of my Social Media Channels

[/content]
[content title=”Latest Articles”]

[/content] [/tab]

Blog Series: #IoT in Healthcare by Manishree Bhattacharya @ManishreeBhatt1


The opportunity for #IoT in Healthcare is estimated to be $2.5 trillion by 2025. How are we embracing this change? The Types of Opportunities that present themselves to the Startups, Healthcare IT organisations are tremendous.

During the #PhilipsChat, on the 10th April 2017, we asked the experts what they thought about the current trends and focus areas that the IT Industry, Medical Device Manufacturers, Hospitals and Start-ups will need to keep in view, in the near and short-term, while making their organisation ready for the Digital Transformation that can be and will be enabled by #IoT in Healthcare.  
Presenting the insights shared by Manishree Bhattacharya (@ManishreeBhatt1) on #IoT in Healthcare
Q1: In the near term (1-3 years), What are the top 3 innovations in IoT that can benefit healthcare?
Manishree Bhattacharya: 1. Remote monitoring of (cardiac disorders, COPD, Alzheimer’s, Parkinson’s, insomnia, diabetes, elderly, expecting mothers)
2. An integrated/connected surgical room, where devices are interoperable, regularly feeds in data into patient profile in EMR, to streamline post-operative care, both in the hospital and beyond, at patient homes
3. IoT for ensuring drug/treatment adherence, such as sensor-based pills
Q2. Do you see any device, connected via any protocol and with any cloud; as the future, if yes how will that be achieved? Standards?
Manishree Bhattacharya: Right now, developments are quite random and sporadic. To achieve larger goals, moving from connected devices to connected hospitals, some level of standardization and uniformity will be important to ensure an error-free, and secured transmission.
Q3: In India (or your country), what are the Digital Infrastructure requirements for enabling IoT based Innovations in Healthcare?
Manishree Bhattacharya: Seeing Digital Health take off in India in its full bloom is one of my wishes, and the preliminary requisite would be to encourage hospitals go paper-less – have EHR systems implemented, with a timeline set for nation-wide implementation. Just imagine how seamless healthcare delivery will be if primary, secondary and tertiary centres are integrated – data can seamlessly flow from one centre to another. Government has a very strong role to play here, that will help in creating the right infrastructure, timely adoption, establishing standards, lowering costs by promoting local manufacturing, and boosting HealthIT start-ups.
Q4. Please share use cases for Connected Care for: Healthy Living, Prevention, Diagnosis, Treatment, Homecare:
Manishree Bhattacharya:
Healthy Living – Most consumer IoT devices aim to do that – tracking exercise regimes, diet plans
Prevention – Say a heart patient puts on a wearable device that continuously monitors and sends signals to nurses/doctors for any aberration – this can ensure timely treatment and prevent a severe episode.
Homecare – A person who has just had a surgery, and is on homecare – his regular vitals, diet plan, outputs are remotely being tracked by the doctor/nurse – who can selectively revise the diet or post-surgery recovery plan. Same goes with elderly who are on home-care.
Treatment – A sensor-based pill that sends a signal to a care-giver on ingestion of the pill.
The bigger purpose – We know that not all medicines work on every patient. Regularly tracking patients not only help in timely interventions, and more personalized treatments, it also opens routes to more clinical research on personalized medicines.
Q5: What are the Healthcare based Smart City components? How can Local, State and National Government’s make #IoT solutions in healthcare economically viable?
Manishree Bhattacharya: Answering to how can government make IoT solutions viable, my thoughts would be:
  1. By promoting indigenous manufacturing to curb costs
  2. Incentivising IoT adoption in hospitals
  3. Prioritizing HealthIT in the overall start-up agenda
Q6: How can private hospitals justify the RoI’s of Smart Hospital Components?
Manishree Bhattacharya: By improving quality of care; reducing hospital re-admissions, yet prolonging the care process that extends to one’s home; and finally improving patient engagement/adherence. A patient is more likely to visit a doctor who can provide a more personalized treatment than the one who cannot. Important would be define these key metrics/KPIs right at the beginning of implementation.

Q7. Tell us a 5 Year view of IoT in Healthcare and what would a Patient Experience be in a Smart Hospital?
Manishree Bhattacharya: First, we have to understand the purpose of IoT in healthcare – it is not there just for the sake of it, but to truly enable a coordinated and long-term care, that would eventually reduce mortality, morbidity, and hospital re-admissions. Patient experience is bound to improve. A patient will not have to run from one department to another, narrating the whole problem and showing multiple reports. So when a cancer in-patient enters a psychologist’s office, and the doctor already knows the problem, and also has the latest vitals of the patient right in his tablet, he knows that the patient was not able to get any sleep the previous night and has a high BP right now. The doctor would hence probably choose to talk about things that can ease the patient’s current situation. Now, that is truly an enriching experience.

Looking ahead in the future, we may also have AI-enabled voice assistants that will make a patient more comfortable in hospital settings.
Q8. Finally: What areas of IoT based innovations are you looking to partner with Startups for? Can you give us two areas?
Manishree Bhattacharya: Would love to connect with any start-up that can provide meaningful solutions for the Indian healthcare landscape. What I would also like to see is how these start-ups are using the tonnes of data that IoT devices generate, in deriving meaningful analysis – big data, AI, and so on.

References

  1. Here is the original Blog Post announcing the #PhilipsChat Tweetchat : http://blog.hcitexpert.com/2017/04/philipschat-on-iot-in-healthcare.html
  2. 3 ways in which Information Technology can improve healthcare in India by Manishree Bhattacharya (@ManishreeBhatt1) on NASSCOM Community
  1. IoT in India – The Next Big Wave by NASSCOM http://www.nasscom.in/iot-india-next-big-wave
  2. Curated list of Tweets from the #PhilipsChat: https://twitter.com/i/moments/852242427008233473
  3. Review the #PhilipsChat Transcript & analytics via @symplur here >> http://hcsm.io/2loNiv7
Stay tuned to the #IoT in Healthcare Blog series. Bookmark this link to follow on the insights being shared by the experts on the HCITExpert Blog:

http://blog.hcitexpert.com/search/label/IoT%20in%20Healthcare

Author
Manishree Bhattacharya

Manager – Research & Advisory at NASSCOM
Business professional with 7+ years of experience in research and advisory, across IT, healthcare, and medical technologies. At NASSCOM, responsible for identifying digital opportunities, driving thought leadership/innovation and delivering actionable insights for the Indian Technology Industry